Effects of paired associative magnetic stimulation between nerve root and cortex on motor function o

来源 :中国神经再生研究(英文版) | 被引量 : 0次 | 上传用户:reaker
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Classic paired associative stimulation can improve synaptic plasticity, as demonstrated by animal experiments and human clinical trials in spinal cord injury patients. Paired associative magnetic stimulation (dual-target peripheral and central magnetic stimulation) has been shown to promote neurologic recovery after stroke. However, it remains unclear whether paired associative magnetic stimulation can promote recovery of lower limb motor dysfunction after spinal cord injury. We hypothesize that the current caused by central and peripheral magnetic stimulation will converge at the synapse, which will promote synapse function and improve the motor function of the relevant muscles. Therefore, this study aimed to examine the effects of paired associative magnetic stimulation on neural circuit activation by measuring changes in motor evoked and somatosensory evoked potentials, motor and sensory function of the lower limbs, functional health and activities of daily living, and depression in patients with spinal cord injury. We will recruit 110 thoracic spinal trauma patients treated in the Department of Spinal Cord Injury, China Rehabilitation Hospital and randomly assign them to experimental and control groups in a 1:1 ratio. The trial group (n = 55) will be treated with paired associative magnetic stimulation and conventional rehabilitation treatment. The control group (n = 55) will be treated with sham stimulation and conventional rehabilitation treatment. Outcomes will be measured at four time points: baseline and 4, 12, and 24 weeks after the start of intervention (active or sham paired associative magnetic stimulation). The primary outcome measure of this trial is change in lower limb American Spinal Injury Association Impairment Scale motor function score from baseline to last follow-up. Secondary outcome measures include changes in lower limb American Spinal Injury Association sensory function score, motor evoked potentials, sensory evoked potentials, modified Ashworth scale score, Maslach Burnout Inventory score, and Hamilton Depression Scale score over time. Motor evoked potential latency reflects corticospinal tract transmission time, while amplitude reflects recruitment ability; both measures can help elucidate the mechanism underlying the effect of paired associative magnetic stimulation on synaptic efficiency. Adverse events will be recorded. Findings from this trial will help to indicate whether paired associative magnetic stimulation (1) promotes recovery of lower limb sensory and motor function, reduces spasticity, and improves quality of life; (2) promotes neurologic recovery by increasing excitability of spinal cord motor neurons and stimulating synaptic plasticity; and (3) improves rehabilitation outcome in patients with spinal cord injury. Recruitment for this trial began in April 2021 and is currently ongoing. It was approved by the Ethics Committee of Yangzhi Affiliated Rehabilitation Hospital of Tongji University, China (approval No. YZ2020-018) on May 18, 2020. The study protocol was registered in the Chinese Clinical Trial Registry (registration number: ChiCTR2100044794) on March 27, 2021 (protocol version 1.0). This trial will be completed in April 2022.
其他文献
Ramsay Hunt 综合征(Ramsay Hunt syndrome,RHS)是潜伏在膝状神经节的水痘带状疱疹病毒(varicella zoster virus,VZV)感染引起的一组特殊症状,典型表现为急性面瘫、耳部疱疹、耳痛,可伴听力下降、持续性眩晕、耳鸣、眼球震颤、头痛等症状[1-2],是一种特殊类型的带状疱疹(her-peszoster,HZ),是继发性面神经麻痹的常见原因之一.为了深入了解RHS临床特点,探讨其脑脊液检查及面神经增强扫描等辅助检查在本病中的应用价值,本文拟对西安市第三医院20
No definite consensus has currently been reached regarding the safety and efficacy of low- or high-frequency repetitive transcranial magnetic stimulation in the treatment of post-stroke muscle spasticity. The latest research indicates that when combined w
Alzheimer\'s disease, the most common type of dementia among older adults, currently cannot be prevented or effectively treated. Only a very small percentage of Alzheimer\'s disease cases have an established genetic cause. The majority of Alzheimer\
The mechanisms that regulate neural stem cell (NSC) lineage progression and maintain NSCs within different domains of the adult neural stem cell niche, the subventricular zone are not well defined. Quiescent NSCs are arranged at the apical ventricular wal
Previous studies have suggested that miR-324-3p is related to the pathophysiology of cerebral ischemia, but the mechanism underlying this relationship is unclear. In this study, we found that miR-324-3p expression was decreased in patients with acute isch
Administration of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) is believed to be an effective method for treating neurodevelopmental disorders. In this study, we investigated the possibility of hUC-MSCs treatment of neonatal hypoxic/isch
Amyotrophic lateral sclerosis is a relentlessly progressive multi-system condition. The clinical picture is dominated by upper and lower motor neuron degeneration, but extra-motor pathology is increasingly recognized, including cerebellar pathology. Post-
Glaucoma is a neurodegenerative disease in which optic nerve damage and visual field defects occur. It is a leading cause of irreversible blindness. Its pathogenesis is largely unknown although several risk factors have been identified, with an increase i
Acupuncture is a medical treatment that has been widely practiced in China for over 3000 years, yet the neural mechanisms of acupuncture are not fully understood. We hypothesized that neurons and astrocytes act independently and synergistically under acup
Brain lesions can cause neural stem cells to activate, proliferate, differentiate, and migrate to the injured area. However, after traumatic brain injury, brain tissue defects and microenvironment changes greatly affect the survival and growth of neural s