论文部分内容阅读
The development of alternative low-cost and high-performing hole-transporting materials(HTMs) is of great significance for the potential large-scale application of perovskite solar cells(PSCs) in the future.Here,a facilely synthesized solution-processable copper tetra-(2,4-dimethyl-3-pentoxy) phthalocyanine(CuPc-DMP) via only two simple steps,has been incorporated as a hole-transporting material(HTM) in mesoscopic perovskite solar cells(PSCs).The optimized devices based on such a HTM afford a very competitive power conversion efficiency(PCE) of up to 17.1%measured at 100 mW cm~(-2) AM 1.5G irradiation,which is on par with that of the well-known 2,2’,7,7’-tetrakis(N’N’-di-p-methoxyphenylamine)-9,9’-spirobifluorene(spiro-OMeTAD)(16.7%) under equivalent conditions.This is,to the best of our knowledge,the highest value reported so far for metal organic complex-based HTMs in PSCs.The advantages of this HTM observed,such as facile synthetic procedure,superior hole transport characteristic,high photovoltaic performance together with the feasibility of tailoring the molecular structure would make solution-processable copper phthalocyanines as a class of promising HTM that can be further explored in PSCs.The present finding highlights the potential application of solution processed metal organic complexes as HTMs for cost-effective and high-performing PSCs.
The development of alternative low-cost and high-performing hole-transporting materials (HTMs) is of great significance for the potential large-scale application of perovskite solar cells (PSCs) in the future. Here, a facilely synthesized solution-processable copper tetra Via (2,4-dimethyl-3-pentoxy) phthalocyanine (CuPc-DMP) via only two simple steps, has been incorporated as a hole- transporting material (HTM) in mesoscopic perovskite solar cells such a HTM afford a very competitive power conversion efficiency (PCE) of up to 17.1% measured at 100 mW cm -2 AM 1.5G irradiation, which is on par with that of the well-known 2,2 ’, 7 , 7’-tetrakis (N’N’-di-p-methoxyphenylamine) -9,9’-spirobifluorene (spiro-OMeTAD) (16.7%) under equivalent conditions. This is, to the best of our knowledge, the highest value reported so far for metal organic complex-based HTMs in PSCs.The advantages of this HTM observed, such as facile synthetic procedure, superior hole transport characteristic, hi gh photovoltaic performance together with the feasibility of tailoring the molecular structure would make solution-processable copper phthalocyanines as a class of promising HTM that can be further explored in PSCs. The present finding highlights the potential application of solution processed metal organic complexes as HTMs for cost -effective and high-performing PSCs.