论文部分内容阅读
Windows integrated with semi-transparent photovoltaics (PVs) such as Dye-Sensitized Solar Cells (DSSCs) show good potential in improving building performance, in terms of providing daylight, reducing unnecessary solar heat gain and also generating electricity onsite. However, low cell efficiency remains an obstacle for their applications in windows. Using light trapping structures in DSSCs shows the potential to improve solar to electrical conversion efficiency. In this work, different pyramid-patted titanium dioxide (TiO2) geometries are designed to enhance the photon absorption in DSSCs, and characterised using a Monte-Carlo algorithm based 3D ray-tracing simulation. Various studies were carried out under average irradiation, spectrum dependent irradiation and different solar incidental angles, respectively. The simulation results at the average irradiation wavelength (540 nm) were compared to those from a previous study using Scanning Photocurrent Microscopy (SPCM) and a reasonable agreement has been achieved. It was found that the structure based on the pyramid array of side wall angle 54.7° can significantly enhance light absorption by up to ~25% and the maximum achievable photocurrent density (MAPD) by up to~45% across the spectrum of 380–800 nm, when compared to a planar control counterpart.