论文部分内容阅读
The stochastic cracking and healing behaviors of reaction-diffusion growth of thin filmswere studied by means of Markov processes analysis. We chose the thermal growth ofoxide scales on metals as an example of reaction-diffusion growth. The thermal growthof oxide films follows power law when no cracking occurs. Our results showed that thegrowth kinetics under stochastic cracking and healing conditions was different fromthat without cracking. It might be altered to either pseudo-linear or pseudo-power lawsdependent upon the intensity and frequency of the cracking of the films. When thehoping items dominated, the growth followed pseudo-linear law; when the diffusionalitems dominated, it followed pseudo-power law with the exponentials lower than theintrinsical values. The numerical results were in good agreement with the meassuredkinetics of isothermal and cyclic oxidation of NiAl-0.1 Y (at. %) alloys in air at 1273K.