论文部分内容阅读
电力系统短期负荷预测既是电力系统调度部门制定发电计划的依据,也是制定电力市场交易计划的基础,它对电力系统的运行、控制和计划都有着非常重要的影响。可由于负荷预测的复杂性、不确定性,难以获得精确的预测值。为提高预测精度,针对电力负荷的特点,综合考虑历史负荷、天气、日类型等因素的影响,将基于均匀设计(UD)和改进遗传算法(IGA)的网络构造法用于短期负荷预测。数据样本训练和实际预测结果表明,该模型不仅可避免陷入局部极小点,而且提高了预测精度和网络的训练速度。