论文部分内容阅读
研究单幅人脸图像的超分辨率重构算法。采用马尔可夫网络模型描述重构机制,对输入的低分辨率图像,以及训练用高分辨率图像和对应的低分辨率图像进行分块,并使图像基本对齐,构造训练图像集。针对简化马尔可夫网络计算的需要以及训练集人脸图像的差异,在块坐标限位操作的基础上,提出了一种非线性样本搜索算法,降低了搜索空间复杂度,提高了匹配效率和相关性。算法利用搜索到的高分辨率图像分块样本,直接输出超分辨率图像。分析和实验证实,与传统学习算法相比,该文方法具有输出质量好、效率高的特点。