论文部分内容阅读
近红外(NIR)光谱一般具有较多的波长变量数,对其直接或间接地进行变量选择是提高模型稳定性能及预测性能的关键。最小角回归(LAR)是一种相对较新和有效的机器学习算法,常用于进行回归分析和变量选择。面向光谱建模应用,提出一种LAR结合遗传偏最小二乘法(GA-PLS)的变量选择方法,可有效筛选出少数特征波长点。首先在全光谱区利用LAR消除变量间的共线性得到初筛波长点,然后用GA-PLS对LAR筛选出的波长点进一步优选从而得到最终建模用的特征波长点。为验证本文方法的有效性,以药片和汽油的近红外光谱回归分析作为应