论文部分内容阅读
鉴于常规的PID控制存在控制对象参数变化时控制参数无法改变的不足,从而根据一个核蒸汽发生器(NSG)的简化数学模型,将一种补偿模糊神经网络(CFNN)用于NSG水位的控制。该网络由于引入了补偿神经元,使网络的容错性更好,系统更稳定。同时在神经网络学习算法中动态优化补偿模糊运算,使网络更适应,训练速度更快。仿真表明,该方法在装置负荷变化时比常规的PID控制方法超调量小,收敛速度快。该网络能在线调整参数,动态优化模糊规则,适于在线学习控制。该控制方法对NSG水位智能控制研究具有一定意义。