论文部分内容阅读
摘 要:随着我国综合国力的不断提高,供电公司生产运行的特殊性与重要性也越发明显。电力系统供电稳定发展对我国经济建设十分重要。现阶段,我国诸多电力系统供电公司已经成功将供电自动化技术应用到电力系统供电实际运行中去。论文通过对存在弊端问题的分析,结合湖北武汉供电公司电力系统实际情况,运用科学、合理的方式对电力系统自动化控制技术进行优化,进而为我国电力系统供电公司的综合发展提供广阔的舞台空间。
关键词:电力自动化技术;电力工程;应用
中图分类号:U712文献标识码:A
引言
电力工程建设中电力控制系统中的自动化技术应用具有重要影响,要想在我国现阶段的电力工程建设中,将工程建设质量提升,就必须要针对工程建设中的技术应用进行分析,以自动化技术应用满足电力工程建设中的工作实施需求,为了提升整体的电力工程建设质量,应该在现有的电力工程建设中,将其整个工程建设中的技术应用与系统控制结合,保障在系统控制结合中,能够实现整个电力工程建设的科学性发展。本文针对电力工程中电力系统自动化技术的应用进行研究,其意义在于按照我国现有的电力工程建设需求,将整个工程建设中的自动化控制技术应用与具体的系统建设结合,保障在其系统建设结合中,能够为我国电力工程建设的科学性发展提供保障。
1 电力系统自动化技术对电力工程的推动作用
随着我国经济建设不断发展与科学技术水平的稳步提升,较为先进的电力系统自动化技术的应用对电力工程建设发展影响作用巨大。电力系统自动化技术是一项复杂、重要且系统性较强的技术体系,需要大量人力与相关技术的支持铺垫,电力系统自动化技术与其他行业的自动化技术略显不同,它有其鲜明的重要性与实用性。因此,将电力系统自动化技术成功应用到电力工程建设中去,可以大幅度的降低时间人力与设备资源的投入,并且能大大提升电力工程建设的综合运转能力与施工效率。首先,在控制与监测方面,电力系统自动化技术可以实现无人监控化与自动管理化,从源头上提升了安全保障与降低事故发生率,实现了电力工程应用电力系统自动化技术的价值最大化,并对其社会效益与经济效益的同步增长奠定了重要基础。其次,在设备监测与维护方面。电力系统自动化技术运行作业过程中最为重要的是设备机器。通过电力系统自动化技术的应用,可以对机器设备上的数据进行监测与分析,并根据数据的变化提出相应的处理措施,这种成效极大限度的发挥了电力系统自动化技术的优势与长处,可以第一时间内将出现故障的数据信息利用网络技术传输到相关的远程控制中心,控制中心管理人员可以迅速做出反应,派遣相关技术人员前往维修。由此可见,电力系统自动化技术的应用对电力工程建设的整体发展与质量进度起到积极的推动作用。在当下网络信息时代的大背景下,只有实现技术革命与创新才能更为有利的促进企业发展与壮大。因此,电力系统自动化技术的应用对电力工程建设有其深远的现实意义。
2 电力自动化技术在电力工程中的应用
2.1 智能无功补偿
传统低压无功补偿技术中主要包括单一信号、三相电容器、三相互补等。但单相负荷的用户采用该种补偿方式后,常出现三相负荷不平衡的状况,出现过补或欠补情况。且该补偿技术未能有效考虑电压平衡关系,不具备较强的检测功能。因此,智能无功补偿技术有效弥补了传统补偿技术的缺陷。其利用固定补偿与动态补偿两种方式的有效结合,以及三相共补与分相共补的集合等技术,有效控制负载变化。同时,先进的投切开关、电压限制的技术模式,促使电容投切更加智能,更加高效。
2.2 光互连技术
在电力工程中,该技术主要基于继电自动化控制系统中,表现在以下几个方面:限制探测器功率扇出数,打破实践应电容性负载,以及平面限制;有利于系统实现高集成度,提升系统监控能力。经过大量的实践研究表明,电子传输与交换技术,利用对程序的结构重新编写,可促使电力系统更加灵活有效。另一方面,有光互连技术的抗磁干扰性较强,因此在利用中需要加大处理器的干涉能力,提升数据通信效率。除此以外,光互连技术还可实现数据采集、控制、计算、人机界面处理等各种功能。以及电网分析和高级应用功能。随着技术的发展,为促使技术使用更加灵活,为技术服务人员提供良好的工作环境,光互连技术的画面变得更加清晰,在电力系统中发挥着重要的作用。
2.3 智能仿真技术应用
智能仿真技术在电力系统自动化技术应用中,主要体现在技术应用的智能化仿真体系建设中,为了将电力工程建设管理中的技术应用控制能力提升,需要按照电力工程建设中的技术应用控制进行自动化技术仿真模型构建,通过仿真模型构建,能够对整个工程系统运行中的电力传输状况进行监督,保障了整个工程建设管理中的技术应用控制整合能力提升,并且在进行电力工程建设传输中,能够借助自动化仿真技术,将整个系统技术控制中的关键性危险点明确,保障了技术应用控制的整合能力提升。
2.4 PLC技术及计算机技术应用
将电力工程建设中的技术应用控制建立在PLC技术芯片之上,通过PLC智能芯片控制,对整个电力供应中的电力运行进行监控,编写不同的指令用来操作不同的系统运行工序,当系统运行中出现了对应的系统故障时,芯片就可以直接发出指令,断掉对应的故障线路,防止出现供电危险,以此保障电力工程电力传输供应安全。按照我国当前电力工程建设中对于智能化供电建设管理需求来看,我国电力建设已经出现了较为明显的改变,以计算机为智能化供电建设要素的电力建设已经实现,将电力运行中的监控信息和计算机技术应用整合,以此进行智能供电建设管理工作开展中的要点控制。
2.5 现场总线技术
在电力工程中,利用智能自动化装置以及各种仪表控制设备的连接,实现一体化的数字信息网络。将数字通信、控制、智能传感器等技术结合起来,形成集成化电力自动化系统。在电力工程中,现场总线技术的应用范围十分广泛。其利用变送器将用电量进行收集,并在主控计算机上进行信号的控制,再根据数学模型进行计算,最终得出结论,并发送至控制设备中,实现自动化运行。该技术中,主要应用分散电力工程中的控制功能,并将其与计算机相连接,实现对现场的远程控制。在众多实践中可证明,现场总线技术在电力工程中的应用,可使得前置机与上位机有效配合,并在下方对电力系统进行控制。电力调度技术的发展中,可满足多种数据形式的电力系统,亦可实现各个信息之间的交换与共享,进而促使电力网络结构的发展更加完善。
结束语
综上所述,对于当前我国电力电气自动化技术在电力工程中的有效应用,其确实表现出了较为理想的作用价值,有效实现了传统管理模式的优化,尤其是在各类故障问题的及时解决和控制上,具备着不可替代的作用,成为未来电力工程发展的重要方向,需要进一步加大对于电力电气自动化技术的研究。
参考文献
[1] 雷荣超.电力自动化技术在电力工程中的实践应用探究[J].工程建设与设计,2017(04):55-56+60.
[2] 展宗波,赵健.电气工程及其自动化技术下的电力系统自动化发展分析[J].山東工业技术,2016(11):177-178.
[3] 王珏飞,王全兴,王军凯.电力工程中的电力自动化技术应用分析[J].中小企业管理与科技(下旬刊),2016(05):164-165.
[4] 朱泽宇.基于电气工程自动化技术在电力系统运行中的应用探析[J].自动化与仪器仪表,2015(06):34+37.
(作者身份证号码:359001197805250514)
关键词:电力自动化技术;电力工程;应用
中图分类号:U712文献标识码:A
引言
电力工程建设中电力控制系统中的自动化技术应用具有重要影响,要想在我国现阶段的电力工程建设中,将工程建设质量提升,就必须要针对工程建设中的技术应用进行分析,以自动化技术应用满足电力工程建设中的工作实施需求,为了提升整体的电力工程建设质量,应该在现有的电力工程建设中,将其整个工程建设中的技术应用与系统控制结合,保障在系统控制结合中,能够实现整个电力工程建设的科学性发展。本文针对电力工程中电力系统自动化技术的应用进行研究,其意义在于按照我国现有的电力工程建设需求,将整个工程建设中的自动化控制技术应用与具体的系统建设结合,保障在其系统建设结合中,能够为我国电力工程建设的科学性发展提供保障。
1 电力系统自动化技术对电力工程的推动作用
随着我国经济建设不断发展与科学技术水平的稳步提升,较为先进的电力系统自动化技术的应用对电力工程建设发展影响作用巨大。电力系统自动化技术是一项复杂、重要且系统性较强的技术体系,需要大量人力与相关技术的支持铺垫,电力系统自动化技术与其他行业的自动化技术略显不同,它有其鲜明的重要性与实用性。因此,将电力系统自动化技术成功应用到电力工程建设中去,可以大幅度的降低时间人力与设备资源的投入,并且能大大提升电力工程建设的综合运转能力与施工效率。首先,在控制与监测方面,电力系统自动化技术可以实现无人监控化与自动管理化,从源头上提升了安全保障与降低事故发生率,实现了电力工程应用电力系统自动化技术的价值最大化,并对其社会效益与经济效益的同步增长奠定了重要基础。其次,在设备监测与维护方面。电力系统自动化技术运行作业过程中最为重要的是设备机器。通过电力系统自动化技术的应用,可以对机器设备上的数据进行监测与分析,并根据数据的变化提出相应的处理措施,这种成效极大限度的发挥了电力系统自动化技术的优势与长处,可以第一时间内将出现故障的数据信息利用网络技术传输到相关的远程控制中心,控制中心管理人员可以迅速做出反应,派遣相关技术人员前往维修。由此可见,电力系统自动化技术的应用对电力工程建设的整体发展与质量进度起到积极的推动作用。在当下网络信息时代的大背景下,只有实现技术革命与创新才能更为有利的促进企业发展与壮大。因此,电力系统自动化技术的应用对电力工程建设有其深远的现实意义。
2 电力自动化技术在电力工程中的应用
2.1 智能无功补偿
传统低压无功补偿技术中主要包括单一信号、三相电容器、三相互补等。但单相负荷的用户采用该种补偿方式后,常出现三相负荷不平衡的状况,出现过补或欠补情况。且该补偿技术未能有效考虑电压平衡关系,不具备较强的检测功能。因此,智能无功补偿技术有效弥补了传统补偿技术的缺陷。其利用固定补偿与动态补偿两种方式的有效结合,以及三相共补与分相共补的集合等技术,有效控制负载变化。同时,先进的投切开关、电压限制的技术模式,促使电容投切更加智能,更加高效。
2.2 光互连技术
在电力工程中,该技术主要基于继电自动化控制系统中,表现在以下几个方面:限制探测器功率扇出数,打破实践应电容性负载,以及平面限制;有利于系统实现高集成度,提升系统监控能力。经过大量的实践研究表明,电子传输与交换技术,利用对程序的结构重新编写,可促使电力系统更加灵活有效。另一方面,有光互连技术的抗磁干扰性较强,因此在利用中需要加大处理器的干涉能力,提升数据通信效率。除此以外,光互连技术还可实现数据采集、控制、计算、人机界面处理等各种功能。以及电网分析和高级应用功能。随着技术的发展,为促使技术使用更加灵活,为技术服务人员提供良好的工作环境,光互连技术的画面变得更加清晰,在电力系统中发挥着重要的作用。
2.3 智能仿真技术应用
智能仿真技术在电力系统自动化技术应用中,主要体现在技术应用的智能化仿真体系建设中,为了将电力工程建设管理中的技术应用控制能力提升,需要按照电力工程建设中的技术应用控制进行自动化技术仿真模型构建,通过仿真模型构建,能够对整个工程系统运行中的电力传输状况进行监督,保障了整个工程建设管理中的技术应用控制整合能力提升,并且在进行电力工程建设传输中,能够借助自动化仿真技术,将整个系统技术控制中的关键性危险点明确,保障了技术应用控制的整合能力提升。
2.4 PLC技术及计算机技术应用
将电力工程建设中的技术应用控制建立在PLC技术芯片之上,通过PLC智能芯片控制,对整个电力供应中的电力运行进行监控,编写不同的指令用来操作不同的系统运行工序,当系统运行中出现了对应的系统故障时,芯片就可以直接发出指令,断掉对应的故障线路,防止出现供电危险,以此保障电力工程电力传输供应安全。按照我国当前电力工程建设中对于智能化供电建设管理需求来看,我国电力建设已经出现了较为明显的改变,以计算机为智能化供电建设要素的电力建设已经实现,将电力运行中的监控信息和计算机技术应用整合,以此进行智能供电建设管理工作开展中的要点控制。
2.5 现场总线技术
在电力工程中,利用智能自动化装置以及各种仪表控制设备的连接,实现一体化的数字信息网络。将数字通信、控制、智能传感器等技术结合起来,形成集成化电力自动化系统。在电力工程中,现场总线技术的应用范围十分广泛。其利用变送器将用电量进行收集,并在主控计算机上进行信号的控制,再根据数学模型进行计算,最终得出结论,并发送至控制设备中,实现自动化运行。该技术中,主要应用分散电力工程中的控制功能,并将其与计算机相连接,实现对现场的远程控制。在众多实践中可证明,现场总线技术在电力工程中的应用,可使得前置机与上位机有效配合,并在下方对电力系统进行控制。电力调度技术的发展中,可满足多种数据形式的电力系统,亦可实现各个信息之间的交换与共享,进而促使电力网络结构的发展更加完善。
结束语
综上所述,对于当前我国电力电气自动化技术在电力工程中的有效应用,其确实表现出了较为理想的作用价值,有效实现了传统管理模式的优化,尤其是在各类故障问题的及时解决和控制上,具备着不可替代的作用,成为未来电力工程发展的重要方向,需要进一步加大对于电力电气自动化技术的研究。
参考文献
[1] 雷荣超.电力自动化技术在电力工程中的实践应用探究[J].工程建设与设计,2017(04):55-56+60.
[2] 展宗波,赵健.电气工程及其自动化技术下的电力系统自动化发展分析[J].山東工业技术,2016(11):177-178.
[3] 王珏飞,王全兴,王军凯.电力工程中的电力自动化技术应用分析[J].中小企业管理与科技(下旬刊),2016(05):164-165.
[4] 朱泽宇.基于电气工程自动化技术在电力系统运行中的应用探析[J].自动化与仪器仪表,2015(06):34+37.
(作者身份证号码:359001197805250514)