Magnetron sputtering deposition of silicon nitride on polyimide separator for high-temperature lithi

来源 :能源化学 | 被引量 : 0次 | 上传用户:majian198522
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
To date,lithium-ion batteries are becoming increasingly significant in the application of portable devices and electrical vehicles,and revolutionary progress in theoretical research and industrial application has been achieved.However,the commercial polyolefin separators with unsatisfying electrolytes affinity and poor thermal stability have extremely restricted the further application of lithium-ion batteries,especially in the high-temperature fields.In this work,magnetron sputtering deposition technique is employed to modify the commercial polyimide separator by coating silicon nitride on both sides.Magnetron sputtering deposition modified polyimide (MSD-PI) composite separator shows high thermal stability and ionic conductivity.More importantly,compared with the cells using Celgard separator,the cells with MSD-PI separator exhibit superior electrochemical performance,especially long-term cycle performance under high temperature environment,owing to the high thermal conductivity of surface Si3N4 particles.Hence,lithium-ion batteries with MSD-PI separator are capable of improving thermal safety and capacity retention,which demonstrates that magnetron sputtering deposition technique could be regarded as a promising strategy to develop advanced organic/inorganic composite separators for high-temperature lithium-ion batteries.
其他文献
文章基于离散元平台,开展了砾质土三轴排水试验的模拟,改进了交错式球颗粒柔性边界的构建方法和展卷式恒定水力围压的模拟方法.并针对不同砾石组构的三轴排水试验,采用颗粒流
针对D-P强度准则存在的拉剪区偏大及不具备应力角效应等不足之处,为使其更符合岩石的屈服(破坏)机制,从弹性应变能角度对D-P强度准则进行修正,开展如下工作:为便于研究将弹性
破坏特征和损伤特性是管片接头失效分析和承载性能研究的重要内容,对于确保其受力安全具有重要意义.文章开展了正负弯矩下管片接头抗弯破坏试验,对接头混凝土裂纹和压溃、螺
The soaring demand for electrical energy storage technologies stimulated by advanced portable devices, prospering electric vehicles, and large-scale grid storag
Benefiting from the environmental friendliness of organic electrodes and the high security of aqueous electrolyte,an all-organic aqueous potassium dual-ion full battery(APDIB) was assembled with 21 M potassium bis(fluoroslufonyl)imide(KFSI) water-in-salt
Currently,Na-ion battery(NIB) has become one of the most potential alternatives for Li-ion batteries due to the safety and low cost.As a promising anode for Na-ion storage,expanded graphite has attracted considerable attention.However,the sodiation-desodi
Lithium-sulfur(Li-S)batteries have attracted considerable attention as next-generation energy storage devices owing to their high theoretical specific capacity and safety.However,the commercialization of Li-S batteries is hindered by critical issues,inclu
The growth of electrical transportation is crucially important to mitigate rising climate change concerns regarding materials supply.Supercapacitors are high-po
Lithium metal-based secondary batteries are very promising for next generation power battery due to their high energy density.However,lithium anodes suffer from
Single-atom metal-nitrogen-graphene (M-N-Gra) catalysts are promising materials for electrocatalytic CO2 reduction reaction (CO2RR).However,theoretical explorat