论文部分内容阅读
针对传统误差反向传播神经网络(BPNN)的不足,在改进误差反向传播算法中引入了动量因子和非线性敏感度因子,实现了在学习过程中根据整体误差梯度变化对非线性敏感度因子进行动态调整.采用该BPNN模型对巴西棕榈蜡和川蜡改性的石蜡滴熔点进行了预测,预测结果的误差为改性石蜡滴熔点预测的绝对误差(A.D.)不超过±0.9 ℃,相对误差(R.D.)在±1.2%范围内.结果表明,改进的误差反向传播神经网络算法适用于改性石蜡滴熔点的预测,并具有较好的预测精度,可以减少石蜡调合试验及相应的改性石蜡滴熔点测