论文部分内容阅读
针对花生荚果人工分级效率低、机械分级不精确等问题,该研究提出一种基于迁移学习的卷积神经网络花生荚果等级图像识别方法。利用翻转、旋转、平移、对比度变换和亮度变换等操作,对获取的5个等级花生荚果图像进行数量扩充和预处理,得到花生荚果等级图像数据集;对比分析了GoogLeNet、ResNet18和AlexNet 3种基本模型下花生荚果图像分级识别的性能;通过迁移AlexNet卷积层对花生荚果等级识别模型进行了改进,用批归一化替换局部响应归一化且将激活函数置于批归一化层前后不同位置,设计了4种不同的识别训练