基于MFCC特征的声纹同一性鉴定方法

来源 :计算机科学 | 被引量 : 0次 | 上传用户:xrf1988
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
声纹作为当代司法鉴定技术发展的产物,在现代声像资料鉴定中发挥了至关重要的作用.传统的声纹分析方法是基于声音处理工具进行手工分析的,考虑到其具有严格的文本相关性以及比对的臆断性的缺点,其作为证据鉴定意见的证明力有待加强.文中提出了一种基于Mel频率倒谱系数的同一性鉴定方法,即提取并量化包含原始声音的共振峰及其时间轴信息的包络作为声纹特征进行同一性比对.此方法改进了传统Mel频率倒谱系数的不足,提取共振峰的突变并将元音与响辅音的转变特性加入声纹特征,以提高其识别度.实验证明,此方法在检材与样本无关的情况下,同一性鉴定的准确率达到了85%,方差控制在9%左右,具有良好的同一性识别;而在非同一性鉴定中,该方法也能在结合人工分析的情况下给出较准确的结果.
其他文献
随着自然语言处理技术的飞速发展以及互联网上对话语料的不断积累,闲聊导向对话系统(简称聊天机器人)取得了令人瞩目的进展,受到了学术界的广泛关注,并在产业界进行了初步的尝试.当前,聊天机器人分为检索式聊天机器人和生成式聊天机器人,而检索式聊天机器人由于其生成的回复流畅且计算资源消耗小,仍然是目前工业界聊天机器人的主要实现手段.文中首先简要介绍了检索式聊天机器人的研究背景、基本架构以及组成模块,重点阐述了回复选择模块的约束要求和相关数据集;然后,针对检索式聊天机器人中最为核心的回复选择技术,进行了深入分析与详细
无人机三维路径规划是一个比较复杂的全局优化问题,其目标是在考虑威胁和约束的条件下,获得最优或接近最优的飞行路径.针对鲸鱼算法在进行无人机三维航迹规划时,存在容易陷入局部最优、收敛速度较慢、收敛精度不够高等问题,提出了一种基于莱维飞行(Lévy flight)的鲸鱼优化算法(Levy Flight Based on Whale Optimization Algorithm,LWOA),用于解决无人机三维路径规划问题.该算法在迭代过程中加入了Levy飞行对最优解进行随机扰动;引入了信息交流机制,通过当前全局最
现有的脑电(EEG)情感识别研究普遍采用神经网络和单一注意机制来学习情感特征,具有相对单一的特征表示.而神经科学研究表明,不同频率和电极通道的脑电信号对情感有不同的响应程度,因此文中提出了一种融合频率和电极通道卷积注意的方法,用于脑电情感识别.具体来说,首先将EEG信号分解到不同的频带上并提取相应的帧级特征,然后用预激活残差网络来学习深层次的脑电情感相关特征,同时在残差网络的每个预激活残差单元中都融入频率和电极通道卷积注意模块,以建模脑电信号的频率和电极通道信息,并生成脑电特征的最终注意表示.在DEAP和