论文部分内容阅读
建立了随机静力作用下考虑几何非线性的随机杆系结构的随机非线性平衡方程.将和位移耦合的随机割线弹性模量以及随机响应量表示为非正交多项式展开式,运用传统的摄动方法获得了关于非正交多项式展式的待定系数的确定性的递推方程.在求解了待定系数后,利用非正交多项式展开式和正交多项式展开式的关系矩阵,可以很方便地得到未知响应量的二阶统计矩.两杆结构和平面桁架拱的算例结果表明,当随机量涨落较大时,递推随机有限元方法比基于二阶泰勒展开的摄动随机有限元方法更逼近蒙特卡洛模拟结果,显示了该方法对几何非线性随机问题求解的有效性.