论文部分内容阅读
赛题呈现已知口,6,c是正实数,求证:(a~3)/(c(a~2+bc))+(b~3)/(a(b~2+ca))+(c~3)/(b(c~2+ab))≥3/2.这是2009年韩国数学奥林匹克竞赛的一道不等式证明题,文[1]给出了这道试题的一个证明和推广.笔者对这个结构优美、内涵丰富的齐次分式不
The contest title presents a known mouth, 6, c is a positive real number, verify: (a~3)/(c(a~2+bc))+(b~3)/(a(b~2+ca))+( c~3)/(b(c~2+ab))≥3/2. This is an inequality testimony of the 2009 Korean Mathematical Olympiad. The paper [1] gives a proof and extension of this test question. The author does not comment on this homogeneous structure with rich connotations.