论文部分内容阅读
对TLD跟踪算法进行改进,以提高在跟踪目标发生尺度变化或被遮挡时的跟踪性能.首先使用KCF跟踪器替代TLD算法中原有的中值光流跟踪器,并在特征提取时增加目标的Lab颜色特征,在寻找目标位置时引入尺度估计,在模型更新阶段引入跟踪状态判别机制,通过设定跟踪器中输出响应最大值阈值、APCE阈值及检测器中随机蕨分类器阈值来判断跟踪器跟踪结果的可靠性,改善跟踪器在尺度变化、出现遮挡、光照变化等情况下的跟踪效果.针对TLD算法中的检测器,为了减少大量无意义的窗口,提升算法在存在遮挡时的精确性,在检测之前使用Ka