Unique ZnS nanobuns decorated with reduced graphene oxide as an efficient and low-cost counter elect

来源 :能源化学 | 被引量 : 0次 | 上传用户:xjx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Unique ZnS nanobuns decorated with reduced graphene oxide (RGO) was synthesized and found to exhibit a synergetic effect as a highly efficient and low-cost counter electrode (CE) in dye-sensitized solar cells (DSCs). Using this ZnS-RGO CE, a power conversion efficiency (PCE) of 7.03% was achieved. This value was 53% and 41% higher than those of pure ZnS and RGO CEs, respectively. The ZnS-RGO nanocomposite is indeed an efficient and cost-effective Pt-like alternative for iodine reduction reaction.
其他文献
The effect of ethanedioic acid (EdA) functionalization on Al2O3 supported Ni catalyst was studied on the hydrodeoxygenation (HDO),isomerization,kinetics and Arrhenius parameters of octadec-9-enoic acid (OA) into biofuel in this report.This was achieved vi
An efficient process for the conversion of dimethyl oxalateinto ethylene glycol with high selectivity and high yield over Cu2O was investigated.In situ formed Cu as a true catalytically active species showed a good catalytic performance for DMO conversion
Lithium-ion batteries (LIB) have received substantial attention in the last 10 years,as they offer great promise as power sources that can lead to the electric vehicle (EV) revolution in the next 5 years.Since the cathode serves as a key component in LIB,
In this work,a series of MIL-101-SO3H(x) polymeric materials were prepared and further used for the first time as efficient heterogeneous catalysts for the conversion of fructose-based carbohydrates into 5-ethoxymethylfurfural (EMF) in a renewable mixed s
Defect engineering has been used to develop low-cost and effective catalysts to boost oxygen reduction reactions.However,the development of catalysts that use metal cation vacancies as the active sites for oxygen reduction reaction is lacking.In this stud