论文部分内容阅读
独立分量分析(ICA)是信号处理技术的新发展,而FastICA是独立分量的一种快速算法,因其收敛速度快而备受关注,但存在步长μ选取不当可能导致算法收敛速度减慢甚至不收敛的问题,本文提出了一种改进的优化学习算法,在牛顿迭代方向上增加精确线性搜索,从而使得算法的收敛性不依赖于μ的人为选择.将改进的FastICA算法应用到语音信号处理中,结果表明该方法迭代次数大大少于FastICA算法,具有收敛速度快的特点.