论文部分内容阅读
The mechanism of improving the TID radiation hardened ability of partially depleted silicon-oninsulator(SOI) devices by using the back-gate phosphorus ion implantation technology is studied. The electron traps introduced in Si O2 near back Si O2/Si interface by phosphorus ions implantation can offset positive trapped charges near the back-gate interface. The implanted high concentration phosphorus ions can greatly reduce the back-gate effect of a partially depleted SOI NMOS device, and anti-total-dose radiation ability can reach the level of 1 Mrad(Si) for experimental devices.
The mechanism of improving the TID radiation hardened ability of partially depleted silicon-oninsulator (SOI) devices by using the back-gate phosphorus ion implantation technology is. The electron traps introduced in Si O2 near back Si O2 / Si interface by a phosphorus ion implantation can offset positive trapped charges near the back-gate interface. The implanted high concentration phosphorus ions can greatly reduce the back-gate effect of a partially depleted SOI NMOS device, and anti-total-dose radiation ability can reach the level of 1 Mrad ( Si) for experimental devices.