论文部分内容阅读
为了在聚类数不明确的情况下实现聚类分析,提出一种新的结合最近邻聚类和遗传算法的动态聚类算法。新算法包括两个阶段:第一阶段用最近邻聚类算法根据最近邻方法把最相似的实例分到同一个簇中并根据一些相似性或相异性度量过滤掉噪声数据从而得到初始聚类集,第二阶段是遗传优化阶段,利用动态聚类评估函数,动态地合并初始聚类集,从而获得接近最优的解。最后对算法进行了实验仿真,实验结果表明方法在事先不知道聚类数的情况下能够有效地进行聚类。