论文部分内容阅读
针对传统神经网络收敛精度低,以及用于故障模式识别能力差的问题,提出了将量子神经网络与小波理论相结合的量子小波神经网络模型。该模型隐层量子神经元采用小波基函数的线性叠加作为激励函数,给出了网络学习算法,并以某型传动装置监测信号的小波能量谱为训练样本,识别传动装置带有缺损的齿轮故障征兆。仿真结果表明,量子小波神经网络能够提高神经网络训练精度和故障征兆识别精度。