论文部分内容阅读
为了解决3D视频生成方法在获取深度线索方面的难题,使用显著图代替深度图进行3D视频生成。显著图和深度图在性质上有所不同,但是显著图是通过视觉注意力分析得到的,因此也可以给予人眼良好的感官体验。为了得到更适合进行视频内容转换的显著图,将时间信息融入到了深度学习模型当中。通过实验证明了本文方法在两个广泛使用的视频显著性数据集上拥有很好的表现力,所生成的3D内容也具有良好的视觉效果,证明了基于显著性检测的3D视频生成方法具有一定的可行性。