论文部分内容阅读
针对电力系统对客户服务的效率低、针对性差的问题,提出了一种采用云模型、离散余弦变换和反向传递神经网络的客户分类算法.通过云模型提取价格敏感度、投诉率、欠费率、销售变现天数以及忠诚度的变化波动情况的云测度,结合余弦变换计算得到特征向量,输入反向传递神经网络训练,从而得到自动客户分级识别的模型.结果表明,提出的模型可以有效实现客户分级以及销售状况评估,其平均检测精确度可达95%以上.