论文部分内容阅读
相对陀螺平台惯性系统而言,无平台惯性系统在重量、体积、成本、可靠性和使用特性等方面具有一系列的优点。但是在下列两方面的特点,无平台惯性系统受到异议: 1.基准座标系的数学模拟区别于由稳定平台实现的物理模拟。 2.对安装在不稳定底座的敏感元件(陀螺和加速度表)的精度要求较高,并要承受很激烈的角运动。 典型的无平台惯性系统敏感元件组合由6个固联在飞行器壳体上的敏感元件组成,其中3个是用于角运动参量的测量(例如,陀螺),另外3个是用于位移运动参量的测量(例如,加速度表)。利用相应的电子设备,将从测量设备组合来的信息加工成3个与绝对角速度向量在陀螺敏感轴瞬时方向的投影成比例的输出信号和3个与感受速度向量在加速度表输入轴瞬时方向的投影变化成比例的信号。
Relative to the gyro platform inertial system, the platformless inertial system has a series of advantages in weight, volume, cost, reliability and usage characteristics. However, there are objections to the platformless inertial system in the following two aspects: 1. The mathematical modeling of the reference coordinate system differs from the physical simulation of the stabilization platform. 2. Sensitive components mounted on unstable bases (gyroscopes and accelerometers) require high accuracy and are subject to intense angular movements. A typical platformless inertial system sensing element combination consists of six sensors mounted on the aircraft shell, three of which are used for the measurement of angular motion parameters (eg gyro) and the other three are used for displacement motion parameters (Eg, accelerometer). Using the corresponding electronic device, the information combined from the measuring device is processed into three output signals proportional to the projection of the absolute angular velocity vector in the momentary direction of the gyro sensitive axis and three output signals proportional to the sensory velocity vector in the momentary direction of the accelerometer input axis Projection changes to a proportional signal.