论文部分内容阅读
提出一种视觉显著性和传统的C-V模型相结合的图像分割方法,该方法首先提取图像的显著图,然后使用改进的自适应阈值法将显著图进行二值分割并提取边缘,并以此边缘作为C-V模型演化的初始轮廓.这样对于具有复杂背景的图像C-V模型可以从靠近目标物体的位置开始演化,从而得到较为准确的边缘,同时,也可以减少C-V模型的迭代次数.