绿色植物靶标的光谱探测研究

来源 :光谱学与光谱分析 | 被引量 : 0次 | 上传用户:cm603
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
利用植物和背景(枯枝、土壤等)的光谱特性“红边”两侧反射率的差异,研究了探测绿色植物靶标的光谱探测技术。定义850与650nm处反射率的比值为植物判别指数(GPDI)。用FieldSpec Handheld2500型野外便携式光谱仪测量了绿色植物和背景的光谱数据,对其进行数据处理,计算各被测物质的植物判别指数GPDI。利用决策树模式识别方法建立植物与背景的分类模型,得到了GPDI阈值(GPDITH),选择此阈值为5.54。当GPDI>GPDITH时,判别探测对象为植物;反之亦然。设计开发了基于AT89S51单片机和光电二极管OPT101的绿色植物光谱探测器。试验结果表明,此探测器的探测率受杂草的种类、大小和密度的影响;阔叶草比窄叶草更易探测到;植株越大、密度越高,探测率越高。 Using spectral characteristics of plant and background (litter, soil, etc.) and differences in reflectivity on both sides of “red edge”, spectral detection techniques for detecting green plant targets were studied. The ratio of reflectance at 850 and 650 nm is defined as the plant discrimination index (GPDI). The spectral data of green plants and background were measured with FieldSpec Handheld2500 field portable spectrometer. The data were processed and the plant discrimination index (GPDI) of each tested substance was calculated. The classification model of plant and background was established by using the decision tree pattern recognition method. The GPDI threshold was obtained, and the threshold was selected as 5.54. When GPDI> GPDITH, the detection target is a plant; vice versa. Design and development of a green plant spectrum detector based on AT89S51 microcontroller and photodiode OPT101. The test results show that the detection rate of this detector is affected by the type, size and density of weeds; broadleaf grass is more easily detected than narrowleaf grass; the larger the plant, the higher the density, the higher the detection rate.
其他文献
成本是所有现代企业经营管理重点管控的领域之一,但是对于处在不同内外部环境中的具体的煤炭企业而言,他们各自的成本的管理和控制又各具不同的特点,并不存在一种模式普遍适合于
我国德育研究的专业化水平提高需要建立在系统化反思基础之上.本文从知识生产的认识维度和组织维度出发,采用Citespace软件分析与代表性文献的人工分析相结合的方法,对我国大
丙型肝炎病毒(HCV)为单股正链RNA病毒,属黄病毒成员。HCV感染目前尚无有效的治疗方法,且易引起慢性化并可能导致肝硬化及肝细胞癌。开发HCV疫苗有助于控制其传播。DNA疫苗是研究热点之一,它可以诱导特异性细胞免疫应答,但诱导强而持久的抗体应答的能力有限。