论文部分内容阅读
针对现有均值反转类策略未充分考虑噪声数据、单周期假设和数据的非平稳性等问题,提出了一种基于多周期的高效的在线自回归移动平均反转(OLAR)算法。首先,利用自回归移动平均算法得到了股价预测模型,并经过合理的假设将其转化为自回归模型;然后,结合损失函数和正则项构造出了目标函数,并利用损失函数的二阶信息得到了参数的闭式解;接着,利用在线被动攻击(PA)算法得到了投资组合的闭式更新。理论分析和实验仿真结果表明,与鲁棒中位数反转(RMR)相比,OLAR在NYSE(O)、NYSE(N)、道琼斯工业指数(DJIA