论文部分内容阅读
通过小波变换的原理对正常乳腺B超图像和病变乳腺B超图像进行小波分解,对图像进行小波去噪处理,再对图像进行小波特征提取。通过人工神经网络的方法对图像的特征参数进行统计分析,得出正常的乳腺B超图像和发生病变的B超图像之间的区别,从而判断哪些图像发生病变。仿真实验表明,该方法相对于医生凭经验判断有更高的准确率。结论:采用小波变换方法将图像分解、去噪并提取出来的特征参数可以有效地将两类图像区分开来,医生根据量化特征参数进行诊断,提高乳腺肿瘤临床诊断的准确率。