论文部分内容阅读
提出了一种基于树结构椭圆簇分裂的深度图像分割算法 .该算法是根据聚类簇协方差矩阵分解的物理含义 ,利用数据的二维散布来同时确定分裂扰动矢量的方向和长度 ,迭代地分裂聚类簇 ,为期望最大化算法提供初始值 .算法还充分利用表面法向高斯混合模型的物理含义来减少聚类次数 ,并根据几何含义清晰的门限自适应确定类别数 .作者针对两种深度相机的 6 0幅真实深度图像进行了实验 ,并与传统的树结构扰动方案以及K均值算法初始方案进行了客观比较 .实验证明 ,新的初始值方案以更少的聚类次数得到了更好的结果