论文部分内容阅读
提出一种基于动态层次分析的自适应多目标粒子群优化算法,利用模糊一致矩阵层次分析法选取全局最优粒子,保证进化方向的合理性和客观性.在进化过程中对种群状态进行客观度量,自适应更新种群的权重和学习因子等重要参数,使种群进化具有自我调节能力.将提出的算法分别应用于标准多目标测试函数、PID控制器参数优化和甲醇转化烃类物质的工业过程模型辨识中,通过与其他算法的对比说明了所提出算法的有效性和可行性.