论文部分内容阅读
隐式情感分析是情感计算的重要组成部分,尤其是基于深度学习的情感分析近年来成为了研究热点.本文利用卷积神经网络对文本进行特征提取,结合长短期记忆网络(LSTM)结构提取上下文信息,并且在网络中加入注意力机制,构建一种新型混合神经网络模型,实现对文本隐式情感的分析.混合神经网络模型分别从单词级和句子级的层次结构中提取更有意义的句子语义和结构等隐藏特征,通过注意力机制关注情绪贡献率较大的特征.该模型在公开的隐式情感数据集上分类准确率达到了77%.隐式情感分析的研究可以更全面地提高文本情感分析效果,进一步推动文本