【摘 要】
:
基于邻域的离群点检测算法中,参数的选择与确定是一个重要的问题,不合理的参数选择导致算法的性能显著下降。为减少参数对于离群点检测的影响,提出了一种基于马尔科夫随机游走的两阶段离群检测算法,可以在不影响算法效率的基础上,有效降低参数对检测结果的影响。该算法首先采用均匀采样策略生成一系列三角剖分图,并引入移除规则得到节点的拓扑结构,从而获得由节点连通性定义的转移概率矩阵,有效减少了算法的计算量和运行时间
论文部分内容阅读
基于邻域的离群点检测算法中,参数的选择与确定是一个重要的问题,不合理的参数选择导致算法的性能显著下降。为减少参数对于离群点检测的影响,提出了一种基于马尔科夫随机游走的两阶段离群检测算法,可以在不影响算法效率的基础上,有效降低参数对检测结果的影响。该算法首先采用均匀采样策略生成一系列三角剖分图,并引入移除规则得到节点的拓扑结构,从而获得由节点连通性定义的转移概率矩阵,有效减少了算法的计算量和运行时间;其次采用加权投票原则重新定义重启向量,并将不同图上得到的平稳分布向量的平均偏差值作为离群点分数,有效的
其他文献
面向图片与视频攻击下的人脸活体检测任务,提出了一种差分量化相邻局部二值模式(DQ_CoALBP)算子,综合不同方向上的图像局部中心点与周围点之间的差值,同时为了更加充分地描述人脸的彩色纹理信息,在颜色空间通道上将该算子与局部相位量化(LPQ)直方图特征相融合,并利用支持向量机(SVM)分类器实现人脸反欺诈判别。在公开CASIA-FASD与Replay-Attack数据集上的实验结果表明,DQ_Co
针对多模态行人重识别中存在较大的类内差异和模态差异的问题,提出了一种使用双端共享网络的多模态行人重识别方法。首先通过裁剪和填充对不同模态的图片进行数据处理;然后将Resnet50的后四个卷积层中嵌入非局部注意力块,使用改进的Resnet50作为骨干网络分别对不同模态的图片进行特征提取,再将不同的特征输入共享网络;最后使用基于类内距离和模态差异的聚类损失对模型进行训练。实验结果表明,使用非局部注意力
视觉注意力模型被应用于自动定位细粒度图片的局部区域以捕捉图片中有辨识度的特征并进行图片的分类的任务,但是模型每次的输入图片尺寸是固定的而辨识度的特征区域大小是不确定的,因此模型不能够准确捕捉图片的全部特征造成分类准确率的下降。本文提出一种可变尺寸循环注意力模型,与之前的固定输入图片尺寸的循环注意力网络相比,模型通过优化注意力策略和尺寸生成策略,能够自主地学习下次输入图片的位置和尺寸,减少总输入图片
随着深度学习相关技术在计算机视觉、自然语言处理等领域的快速发展和广泛应用,深度学习模型逐渐成为了高价值攻击目标,其固有的易受噪声干扰的安全隐患也逐步暴露出来,如基于生成对抗网络(GAN)或机器学习的方式,通过添加少量特定的噪声来生成对抗样本,导致现有的深度学习模型失效。目前的对抗攻击技术一般针对特定深度学习模型,使用海量算力搜索特定扰动噪声,无论是GAN还是传统机器学习方式,其计算效率和对抗攻击成
古印章文本因图像退化与超多分类等特点导致识别难度大,部分字符的标注数据不足造成基于深度学习的模型识别准确率不高,泛化能力差。针对上述问题,提出基于深度残差网络(ResNet)和迁移学习的古印章文本识别方法。使用深度残差网络作为特征提取网络,利用人工合成字符样本作为源域进行预训练。将自建古印章文本识别数据集作为目标域,引入迁移学习并结合数据增强和标签平滑策略建立分类模型。最后,对比多种网络下的识别结
针对多源点云配准存在噪声、部分重叠、不同模型的配准参数难确定等问题,提出一种基于贡献因子的改进TrICP算法。首先, 使用改进体素降采样以及随机采样对点云进行降采样。然后利用改进算法的贡献因子来保留对配准贡献度更大的点对,使用奇异值分解法(SVD)对变换矩阵求解,同时计算距离曲线上的点经过原点的斜率来自动计算重叠度,实现点云的全自动配准。使用斯坦福大学的Bunny点云以及”茂县624”滑坡现场点云
针对现有神经网络图像修复方法在移动终端设备上部署存在效果差、响应时间长、高能耗的问题,提出了一种面向边-端协同的并行解码器图像修复方法及计算卸载策略。首先,结合移动边缘计算(MEC)技术边-端协同的特性,提出一种面向边-端协同的并行解码器门控卷积图像修复网络ETG-Net(Edge- Terminal Gated Convolution Network)。其次,通过边-端共享权值的方式,提升图像修
针对现有立体匹配深度学习模型中常采用线性插值进行代价体上采样,而无法充分利用邻域纹理信息的问题,提出了一个自适应上采样模块。该模块首先为高分辨率输出中每一个像素位置自适应学习采样的权重窗口,然后采用最近邻方法将低分辨率输入上采样后在对应位置使用学习到的权重卷积得到最终对应高分辨输出的值。该模块具有以下三个特点:1.大感受野,通过堆叠的空洞卷积以及多尺度窗口提高像素的邻域纹理感知能力;2.轻量级,与
针对人脸追踪过程中,基于目标色彩特征的CamShift(Continuously Adaptive Mean-Shift)算法受类肤色背景干扰所导致的搜索框偏移及尺寸异常问题,提出了一种结合肤色分割及追踪监测机制的人脸追踪改进算法。首先,在YCbCr色彩空间的Cb、Cr分量内采用非参数肤色分割模型及SVM(Support Vector Machines)构建特定于当前视频序列的联合肤色分割模型,以
针对以黑色素瘤为代表的皮肤癌分类任务存在数据集各类样本数量、权重不均衡,且现有的对抗生成网络生成的皮肤癌样本图像质量较差导致临床诊断时难以分辨等问题,提出了一种基于自注意力的样式生成对抗网络(Self-Attention-StyleGAN)与SE-ResNeXt-50相结合的皮肤癌图像样本生成与分类框架。该框架在样式生成对抗网络(StyleGAN)的基础上引入了自注意力机制,对生成器的样式控制和噪