论文部分内容阅读
基于稀疏表示理论,提出了一种面向单张图片超分辨率的字典学习方法。通过对训练数据进行分类,期望在每一类训练数据训练字典的过程中,增强类内的上下文信息。与之前的面向图像分类的字典学习方法所不同的是,训练数据集由高分辨率图像块和对应的低分辨率图像块共同组成,这使训练得到的字典更适用于图像重构。利用有限的训练数据集,基于上下文的字典学习方法能够提高字典表示的拓展能力,消除由多重训练数据子集带来的冗余。