人工神经网络的可靠性与容错性及其研究方法

来源 :科技导报 | 被引量 : 0次 | 上传用户:hdc988
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
极强的可靠性和容错性是神经网络的重要特性,对神经网络其它主要特性(如并行性和自学习特性)有重大影响。对于神经网络的可靠性研究十分必要。由于近年来重新掀起了神经网络的研究热潮,对于神经网络的可靠性方面的研究与设计工作亦是刚刚起步。本文旨在对已有的研究结果进行总结与归纳,力求从中得出一些重要的结论,并提供一些有价值的研究方法。本文还对这一研究领域的发展方向进行了探讨。 Extreme reliability and fault tolerance are important features of neural networks and have a significant impact on other key neural network features, such as parallelism and self-learning features. It is necessary to study the reliability of neural network. In recent years, the wave of research on neural networks has been revived. Research and design work on the reliability of neural networks has just begun. The purpose of this paper is to summarize and summarize the existing research results and try to draw some important conclusions and provide some valuable research methods. This article also explores the development direction of this research area.
其他文献
期刊
期刊
期刊
期刊
期刊
期刊
期刊
期刊
期刊
提出了对包装跌落冲击信号的快速,高效数据采集方法及其实现原理,通过设置“采样开始”和“采样结束”控制信号来实现对跌落冲击信号的准确捕捉;采用DMA方式实现内存和外设间