论文部分内容阅读
利用光纤布拉格光栅方程和光纤基模有效折射率随纤芯半径和环境折射率的函数关系,建立了微纳光纤布拉格光栅(MNFBG)反射波长随环境折射率变化的数学模型,给出了波长灵敏度函数,并指出MNFBG反射波长的变化规律决定于有效折射率随纤芯半径和环境折射率变化的关系.详细探究了有效折射率及其灵敏度的变化规律,结果表明:有效折射率随纤芯半径和环境折射率的减小而非线性减小,其对环境折射率变化的灵敏度随环境折射率的增大而非线性增加,而且随纤芯半径减小,有效折射率的灵敏度、线性度以及线性响应范围均呈递增规律.通过对纤芯半径为0.5μm的MNFBG在1.20—1.30和1.33—1.43环境折射率范围内的波长响应关系拟合,分别获得了477.33nm/RIU和856.30nm/RIU的波长灵敏度以及99.58%和99.7%的高线性度,论证了分析结论以及折射率区间划分测量方案的正确性,为MNFBG折射率传感器的设计、优化以及应用提供了参考依据.
Based on the fiber Bragg grating equation and the effective refractive index of the fundamental mode of fiber, the mathematical model of the reflection wavelength of the micro-nanofiber Bragg grating (MNFBG) as a function of the refractive index of the environment is established as a function of the radius of the core and the refractive index of the environment. The wavelength sensitivity The results show that the effective refractive index changes with the core radius And environmental non-linear decrease of the refractive index decreases, its sensitivity to environmental refractive index changes with the ambient refractive index increases non-linearly, and with the core radius decreases, the effective refractive index sensitivity, linearity and The linear response range showed an increasing rule.According to the wavelength response relationship of MNFBG with a core radius of 0.5μm in the range of 1.20-1.30 and 1.33-1.43, we obtained 477.33nm / RIU and 856.30nm / RIU Of the wavelength sensitivity and high linearity of 99.58% and 99.7%, demonstrated the conclusions of the analysis and refractive index interval of the correctness of the measurement scheme for the MNFBG refraction Sensor design, optimization, and applications to provide a reference.