论文部分内容阅读
针对传统协同过滤推荐算法稀疏性、冷启动、推荐质量不高等缺陷,提出一种基于混合蛙跳模糊聚类的协同过滤推荐算法.该算法先对原始评分矩阵用户和项目进行联合聚类,利用联合聚类结果对评分矩阵进行填充,再对混合蛙跳算法进行改进,利用改进后的算法快速地全局寻优能力得到项目最近邻居集合,最后通过计算预测评分生成推荐结果.仿真结果表明,该算法有效缓解对评分数据稀疏性的不良影响,同时在推荐精度上有明显改善.