论文部分内容阅读
我们知道,对关于未知数x的方程ax=b的解的讨论有如下三种情形:①当a≠0时,方程为一元一次方程,其解为x=a b;②当a=0,b=0时,方程的解x为任意实数;③当a=0,b≠0时,方程无解。应用情形②解决函数图象过定点问题,简单巧妙。解决方法是将含有字母参数的函数解析式变形整理为关于字母参数的方程,便可应用情形②加以解决函数图象过定点问题。举几个例子。例1.证明:无论k为何值,直线y=kx+3k+2必过一定点,并求
We know that there are three cases for the discussion of the solution of the equation ax = b for the unknowns x: ① When a ≠ 0, the equation is a unitary equation with x = ab; ② When a = 0, b = 0, the solution of the equation x is any real number; ③ When a = 0, b ≠ 0, the equation has no solution. Application scenarios ② solve the function of the image over a fixed point, simple and clever. The solution is to transform the function containing the alphabetic parameters into an equation on the alphabetic parameters, which can be used to solve the fixed point problem of the function image. Cite a few examples. Example 1. Proof: Whatever the value of k, the straight line y = kx + 3k + 2 must pass a certain point