基于优化Inception V1的视频火焰超像素检测方法

来源 :激光与光电子学进展 | 被引量 : 2次 | 上传用户:laden167
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对传统火焰检测模型的检测准确度较低和速度慢等问题,提出一种优化的卷积神经网络和超像素分割算法的视频火焰区域检测方法。首先使用火焰图像数据集对模型进行训练和验证,采用卷积核堆叠替换的方法改进Inception模块的结构;其次采用小卷积核替换的方法改进网络的前端结构,并将Focal-Loss函数作为损失函数以提高模型的泛化能力;然后设计InceptionV1模型的参数复杂度优化实验,生成优化的火焰检测网络结构;最后将超像素分割算法提取的火焰超像素语义信息输入优化的InceptionV1模型中,并进一步
其他文献
针对机器人自适应打磨曲面焊接区域的识别问题,提出了一种基于线结构光的打磨机器人自动识别起始点与终止点的算法和一种深度图像增强算子。增强算子将中心像素与8邻域内像素强度差的绝对值和作为中心像素值,以增强深度图像的可视化特征和打磨区域的纹理特征。首先,对点云数据进行滤波和空洞填充处理;然后,计算每一扫描行点云在高度方向的标准差;最后,对所得特征进行识别,找到一定范围内特征变化较大的位置,从而提取出打磨
近年来,多孔石墨烯纳米材料以其独特的物理和化学性质以及在生物、材料、能源、信息等领域的巨大潜在应用,受到了全世界的广泛关注.然而,多孔石墨烯的合成通常采用高温处理或
光热、光化及光机械等多种激光-生物组织相互作用研究的基础都是对激光辐照下生物组织内部光分布的准确描述,而准确描述组织内部光分布的有效手段是采用各类数学模型及模拟方
卫星激光测距是获取空间目标高精度距离的重要技术。在测量数据应用于科学研究之前,需要对原始数据进行一系列的预处理。常用的信号提取方法主要有Graz自动识别、泊松滤波和人工识别等。近年来,一些学者将深度学习技术应用到天文领域,解决了一些问题并取得了相对理想的结果。提出了一种利用深度学习技术提取目标信号的方法,实测数据的识别结果表明,所提算法具有一定的可靠性、通用性和可行性。研究结果对卫星激光测距系统向
视频异常行为的检测对保障公共安全至关重要,对基于深度学习的异常行为检测算法进行了分类与总结。首先,介绍了异常行为检测的整体流程。然后,根据神经网络训练的方式,从有监督学习、弱监督学习和无监督学习三个方面论述了深度学习在异常行为检测领域的发展与应用,同时分析了不同训练方式的优缺点。最后,介绍了常用数据集以及性能评估准则,分析了不同算法的性能,并展望了未来的发展方向。