基于机器学习的CT定量指标与新型冠状病毒肺炎临床分型及肺损伤严重程度的相关性研究

来源 :中华放射学杂志 | 被引量 : 0次 | 上传用户:david_test
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的:探讨胸部CT定量指标在新型冠状病毒肺炎(COVID-19)临床分型及肺损伤严重程度评价中的价值。方法:回顾性分析华中科技大学同济医学院附属同济医院2020年1月1日至2020年4月1日COVID-19确诊的438例患者的临床及CT影像资料。临床分型为普通型146例、重型247例、危重型45例。使用人工智能(AI)深度学习定量分析所有患者胸部CT指标,包括全肺体积、全肺感染体积、磨玻璃密度体积(GGO体积,CT值<-300 HU)和实性密度体积(SO体积,CT值≥-300 HU)以及SO体积/GGO体积。采用Kruskal-Wallis检验对各临床分型之间定量参数的差异性进行统计学分析,采用多元有序logistic回归分析定量参数与临床分型之间的相关性。结果:438例COVID-19确诊患者中,重型及危重型患者的年龄较大(n P<0.05),且危重型患者以男性为主(n P<0.05)。各临床分型患者的临床表现均主要以发热为主,其次为咳嗽、乏力、胸闷、呼吸困难、消化道症状等。3种临床分型肺部病变的CT表现均以GGO为主;全肺感染体积、GGO体积、SO体积以及各自在全肺体积的比例均从普通型、重型到危重型患者逐渐增大(n P<0.01);SO体积/GGO体积随临床分型严重程度增加逐渐增大[普通型为0.12(0.03,0.34),重型为0.29(0.11, 0.59),危重型为0.61(0.39,0.97),n P<0.05]。多元有序logistic回归分析显示全肺感染体积(OR=1.009)、SO体积/GGO体积(OR=1.866)、GGO体积(OR=1.008)和SO体积(OR=1.016)对临床分型的严重程度产生显著的正向影响关系(n P<0.01)。n 结论:基于AI胸部CT定量指标(SO体积、GGO体积、SO体积/GGO体积)与COVID-19肺炎临床严重程度密切相关。“,”Objective:To investigate the value of chest CT quantitative index in clinical classification and lung injury severity evaluation of COVID-19.Methods:The current study retrospectively analyzed the clinical and CT data of 438 patients with COVID-19 between January 2020 and March 2020 in Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology. The clinical types included common type ( n n=146), severe type (n n=247) and critical type (n n=45). The chest CT indexes of all patients were quantitatively analyzed by artificial intelligence (AI) deep learning, including whole lung volume, CT lung opacification, ground glass opacification volume (GGO volume; CT value<-300 HU), solid opacification volume (SO volume; CT value ≥-300 HU) and the ratio of volume to the whole lung volume, the ratio of SO volume to GGO volume (SO volume/GGO volume). Kruskal-Wallis test was used to conduct statistical analysis of the differences in quantitative parameters among clinical types, and multiple ordered logistic regression was used to analyze the correlation between quantitative parameters and clinical types.n Results:Among the 438 patients diagnosed with COVID-19, severe and critical patients were older (n P<0.05), and most of the critical patients were male (n P<0.05). The main clinical manifestations of all clinical types were fever, followed by cough, fatigue, chest tightness, dyspnea, gastrointestinal symptoms and so on. GGO volume was the main CT manifestation of all the three clinical subtypes. The whole-lung opacification volume, GGO volume, SO volume and their proportions in whole-lung volume significantly increased from common, severe to critical types (alln P<0.05). SO volume/GGO volume increased with the severity of clinical type [common type 0.12 (0.03, 0.34), severe type 0.29 (0.11, 0.59), critical type 0.61 (0.39, 0.97)]. Multiple ordered logistic regression analysis showed that whole-lung opacification volume (OR=1.009), SO volume/GGO volume (OR=1.866), GGO volume (OR=1.008) and SO volume (OR=1.016) had a significant positive effect on the severity of clinical typing (n P<0.01).n Conclusion:Quantitative indicators of chest CT based on deep learning algorithm (SO volume, GGO volume, SO volume/GGO volume) are closely related to the clinical severity of COVID-19.
其他文献
丙型肝炎是第一个可以治愈的慢性病毒感染性疾病,人类从发现丙型肝炎病毒的基因组到具备消除该病毒的公共卫生威胁的能力,仅仅用了30年时间。近十年来,丙型肝炎的病原学检测,经历了从灵敏、定量到快速、方便、全自动、即时检验的发展。随着直接抗病毒药物的陆续上市,包括特殊人群在内的各类丙型肝炎患者能被短疗程、全口服药物安全、有效地治愈。丙型肝炎诊断和治疗研究的重要进展是消除丙型肝炎公共卫生威胁的重要基础,我国
目的探讨基于肾脏CT平扫图像纹理分析的影像组学模型在预测肾透明细胞癌(ccRCC)WHO/国际泌尿病理学会(ISUP)病理分级中的价值。方法回顾性分析2016年12月至2019年5月中国科学院大学附属肿瘤医院经手术病理证实且有明确病理分级的90例ccRCC患者,按照7∶3的比例将所有患者随机分为训练组(63例)及测试组(27例)。根据2016版WHO/ISUP分级标准,将Ⅰ、Ⅱ级归为低级别组(53