论文部分内容阅读
针对主动形状模型(ASM)迭代过程容易陷入局部最优解的不足,提出了一种基于局部纹理模型的改进ASM算法,即EWASM.在局部纹理模型构建中,以每个特征点的中垂线方向搜索其邻域信息以确定最佳匹配位置,对衡量匹配程度的马氏距离加以推广,进而得到改进的扩展加权局部纹理模型,它由中心局部纹理模型、前局部纹理模型和后局部纹理模型共3个子模型加权组成,并对加权参数进行实验优化,使各个特征点之间的联系更加紧密,模型的鲁棒性更好.通过表情识别实验对提出的EWASM算法和传统ASM算法进行对比,选用RBF神经网络分类