论文部分内容阅读
目的深度网络用于3维点云数据的分类分割任务时,精度与模型在全局和局部特征上的描述能力密切相关。现有的特征提取网络,往往将全局特征和不同尺度下的局部特征相结合,忽略了点与点之间的结构信息和位置关系。为此,通过在分类分割模型中引入图卷积神经网络(graph convolution neural network,GCN)和改进池化层函数,增强局部特征表征能力和获取更丰富的全局特征,改善模型对点云数据的分类分割性能。方法 GCN模块通过K近邻算法构造图结构,利用相邻点对的边缘卷积获取局部特征,在深度网络模型