论文部分内容阅读
根据Fourier变换理论,本文构造出一类基于三角正交基的前向神经网络模型。该模型由输入层、隐层、输出层构成,其输入层和输出层采用线性激励函数,以一组三角正交基为其隐层神经元的激励函数。依据误差回传算法(即BP算法),推导了权值修正的迭代公式。针对BP迭代法收敛速度慢、逼近目标函数精度较低的缺点,进一步提出基于伪逆的权值直接确定法,该方法避免了权值反复迭代的冗长过程。仿真和预测结果表明,该方法比传统的BP迭代法具有更快的计算速度和更高的仿真与测试精度。