论文部分内容阅读
高分辨率遥感影像具有高维、多尺度、非平稳的内部特性和海量、多源、异构的外部特征,具有丰富的空间信息。探讨了利用新兴的深度信念网络研究高分辨率遥感影像的智能提取与分类,通过大量实验对比分类精度、Kappa系数以及参数敏感度分析,提出了网络层数、隐含层神经元个数、迭代次数等参数的最优设置方案,相比传统的浅层网络分类器,改进后的深度信念网络更好地拟合了样本的内在结构,遥感图像分类精度达到92%左右,取得了很好的分类效果。