论文部分内容阅读
The porous material ATZ with micro-mesopore hierarchical porosity was prepared by alkali treatment of parent HZSM-5 zeolite and applied for propane dehydrogenation. The zeolite samples were characterized by XRD, N2-physisorption, and NH 3-TPD analysis. The results showed that the alkali treatment can modify the physicochemical properties of HZSM-5 zeolite. In this case, the porous material ATZ showed larger external surface area with less acid sites as compared to the HZSM-5 zeolite. It was found out that the alkali treatment of HZSM-5 zeolite could promote the catalytic performance of PtSn/ATZ catalyst. The possible reason was ascribed to the low acidity of ATZ. Furthermore, the presence of mesopores could reduce the carbon deposits on the metallic surface, which was also favorable for the dehydrogenation reaction.
The porous material ATZ with micro-mesopore hierarchical porosity was prepared by alkali treatment of parent HZSM-5 zeolite and applied for propane dehydrogenation. The zeolite samples were characterized by XRD, N2-physisorption, and NH3-TPD analysis. The results said that the alkali treatment can modify the physicochemical properties of HZSM-5 zeolite. In this case, the porous material ATZ showed larger external surface area with less acid sites as compared to the HZSM-5 zeolite. It was found out that the alkali treatment of HZSM -5 zeolite could promote the catalytic performance of PtSn / ATZ catalyst. The possible reason was ascribed to the low acidity of ATZ. Furthermore, the presence of mesopores could reduce the carbon deposits on the metallic surface, which was also favorable for the dehydrogenation reaction .