论文部分内容阅读
提出了一种高阶CMAC(HCMAC)神经网络,它是采用高阶的径向基函数作为接收域函数,为了进一步增强对输入模式的表达,还可以用接收域函数输入模式向量构成张量积,这时产生的是高维的增强表达,同时HCMAC沿用CMAC的地址映射方法,由于高阶接收域函数的引入,使其可以获得较CMAC连续性强且有解析微分的复杂函数近似,HCMAC在不改变CMAC简单结构的基础上较RBF网络有计算量少,学习效率高等优点,中