论文部分内容阅读
在由频繁项集产生关联规则时,利用提升度判断规则前、后件之间的正相关性可以避免产生一些无意义的关联。但是,这并不能保证规则前、后件中的项是正相关的,也不能减少挖掘频繁项集的时间开销。当规则的前件或后件存在负相关的项时,仍然可能产生无意义的关联规则。针对以上问题,基于数学期望,提出了正相关的频繁项集的概念,并改进了一种直接在FP-树中挖掘频繁项集的算法,挖掘出正相关的频繁项集,从而有效地解决以上问题。实验表明,该算法可以大幅度地减少所产生的频繁项集数量,显著地降低了挖掘频繁项集的时间开销。对于大型数据集