论文部分内容阅读
为提高三维医学数据场的分割效率和准确率,本文利用特征聚类技术,提出了一种新的基于改进K-means聚类的三维医学数据场的体分割算法。根据医学数据的物理意义和医学特征分析,对数据场进行预处理,以加快后继处理速度;分析推导了基于改进K-means聚类的分割算法,并改进了算法采样技术,减少需要计算的像素数目以进一步提高处理速度。实验结果表明本算法不仅能够提高三维医学组织的聚类分割精度至96%,而且能够提高66%的模型处理速度。