论文部分内容阅读
基于负相关异构网络,提出了一种增量构造异构神经网络集成(NNE)的方法.该方法在训练成员网络时,不仅调整网络的连接权值,而且动态调整网络的结构,从而在提高单个网络精度的同时增加各成员网络之间的差异度,减小网络集成的泛化误差.该方法包括构造最佳异构网络(BHNN)和构造异构网络集成(HNNE)两个部分, BHNN基于负相关学习动态构造多个最佳网络, HNNE利用训练好的最佳网络增量地构造异构NNE.使用网络泛化误差和集成泛化误差,整个集成过程可自动完成,无需预先确定成员网络的结构.分别对回归和分类问题进行了