论文部分内容阅读
在高光谱数据处理中,基于随机投影的降维算法研究开始受到关注,压缩投影主成分分析(CPPCA)是一种由随机投影值重构高光谱图像的有效方法.根据高光谱图像具备的空间相关性,基于CPPCA提出一种新的改进方案.先在空间维把高光谱数据转换至小波域并依据其高低频情况对数据进行分类,再在光谱维选择不同的抽样率参数进行随机投影;重构时,利用CPPCA重构方法分别恢复各类小波域数据,再在空间维进行小波反变换获得高光谱图像.仿真结果表明,与原有CPPCA方法相比,高光谱图像重构质量得到提高,尤其是在抽样率低于0.2的