基于多智能体增强学习的公交驻站控制方法

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:alimamaai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
车辆驻站是减少串车现象和改善公交服务可靠性的常用且有效控制策略,其执行过程需要在随机交互的系统环境中进行动态决策。考虑实时公交运营信息的可获得性,研究智能体完全合作环境下公交车辆驻站增强学习控制问题,建立基于多智能体系统的单线公交控制概念模型,描述学习框架下包括智能体状态、动作集、收益函数、协调机制等主要元素,采用hysteretic Q-learning算法求解问题。仿真实验结果表明该方法能有效防止串车现象并保持单线公交服务系统车头时距的均衡性。
其他文献
提出了基于trace变换不变性特征的人脸识别算法,提高了单训练样本下姿势和表情变化后的识别率。应用一阶Scharr算子、二阶尺度适应的高斯型拉普拉斯算子(LOG)和Harris滤波器定位特征点,选择合适的泛函在特征点的邻域内进行trace变换得到具旋转和尺度不变性的特征描述子。根据特征描述子的特征向量和坐标值实现由粗到精的匹配,整个过程不涉及参数选择问题,保证了算法的稳定性。实验结果证明该算法降低